DUAL PARAMETRIZATION OF THE BIFURCATION SET OF A MECHANICAL SYSTEM WITH QUADRATIC INTEGRALS \dagger

V. I. OREKHOV
St Petersburg
(Received 6 February 1996)

A well-known scheme of topological analysis [1] is extended to the case of three or more integrals which are quadratic functions of the velocity. The bifurcation set is parametrized by Lagrange multipliers, which corresponds to a transition to the dual surface. As an example, the motion of a rigid body in a field with quadratic potential is considered. © 1997 Elsevier Science Ltd. All rights reserved.

1. Let us assume that a dynamical system on the tangent bundle $T M$ of an n-dimensional manifold M with Riemannian metric $\langle,$,$\rangle has m$ integrals

$$
\begin{equation*}
F_{i}(\mathbf{v})=\left\langle\mathbf{v}, \Gamma_{i} \mathbf{v}\right\rangle+W_{i}(x) ; \quad \mathbf{v} \in T_{x} M \tag{1.1}
\end{equation*}
$$

where v is the velocity, $T_{x} M$ is the tangent fibre at $x \in M, \Gamma_{i}$ are the self-adjoint linear fibre operators, and Γ_{1} is the identity operator. Consider the integral map $F: T M \rightarrow R^{m}, F(\mathrm{v})=f=\left(f_{1}, \ldots, f_{m}\right), f_{i}=$ $F_{i}(v)$, whose range we denote by Ω, and the map $W: M \rightarrow R^{m}$ defined similarly by the functions $W_{i}(x)$ and giving the values of F at zero velocity, the set of which we denote by Ω_{0}.

We adopt the notation λf for the convolution of the vector f with the covector $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$, and the notation $\lambda F, \lambda \Gamma, \lambda W$ for the sheaves F_{i}, Γ_{i}, W_{i} with coefficients λ_{i}.
The object of topological analysis [1] is to describe the integral surfaces $I_{f}=F^{-1}(f) \subset T M$ and bifurcation set $\Sigma \subset R^{m}$, which consists of points f corresponding to modifications (surgeries) I_{f}, i.e. it includes the critical values of the integral map. The critical points of the latter are determined by the dependency condition of the differentials $d F_{i}$, which may be represented as $d \lambda F=0$, where λ_{i} are the Lagrange multipliers. This condition is invariant [2], that is, the critical points of the sheaf λF form complete motions, which we call steady motions. We will use the quantities λ to parametrize the families of steady motions and the bifurcation surface.

As the partial gradient of the function λF along the fibre $T_{x} M$ equals $2 \lambda \Gamma \mathrm{v}$, the critical points \mathbf{v} of the map F corresponding to a specific λ lie in the kernel of the operator $\lambda \Gamma$. Let $P(\lambda, x)=\operatorname{det} \lambda \Gamma, P^{\prime}(\lambda$, $x)=\partial P / \partial \lambda_{1}, D(\gamma, \lambda, x)=\operatorname{det}(\lambda \Gamma-\gamma E)$, where $\gamma_{i}(\lambda, x)$ are the roots of the equation $D=0$. Since $\lambda \Gamma-$ $\gamma E=\left(\lambda_{1}-\gamma\right) E+\ldots \lambda_{m} \Gamma_{m}$, it follows that $\partial D / \partial \gamma_{\gamma=0}=-P^{\prime}(\lambda, x)$. If $P=0$, one of the roots, say γ_{1}, must vanish, the kernel of $\lambda \Gamma$ is not zero, and by Vièta's theorem $P^{\prime}=\gamma_{2} \gamma_{3}, \ldots \gamma_{n}$. If $P=0$ and $P^{\prime} \neq 0$, the multiplicity of the zero root and the dimensions of the kernel of $\lambda \Gamma$ are greater than one. Then the rank of the matrix $\lambda \Gamma$ is less than $n-1$, that is, all the cofactors $P_{i j}$ of its elements $\gamma_{i j}$ vanish, so that $d P=\Sigma P_{i j} d \gamma_{\gamma_{j}}=0$. Thus, when $P^{\prime}=P=0$, the differential $d P$ vanishes, and so does the partial differential $d_{x} P$.

The functions P and P^{\prime} define parametrizations by λ of families of functions $P_{\lambda}(x)$ and $P_{\lambda}^{\prime}(x)$ on M. It follows from the foregoing that, given λ, the points x over which the kernel of $\lambda \Gamma$ does not vanish form a surface $Z_{\lambda}=\left\{x: P_{\lambda}(x)=0\right\}$, at whose regular points (we shall assume that these are points of general position on $\left.Z_{\lambda}\right) P_{\lambda}^{\prime}(x) \neq 0$, so that the kernel of $\lambda \Gamma$ over them is one-dimensional. It can be shown that the surface Z_{λ} and function λW are invariant with respect to the vectors of the kernel λF. (For natural systerns this follows from the equations considered in [3].)

Proposition 1 . The vectors $\mathbf{v} \in \operatorname{ker} \lambda \Gamma$ over regular points of the surface Z_{λ} are critical points of the integral map provided that

$$
\begin{equation*}
d \lambda W+\vartheta d P_{\lambda}=0 ; \quad|v|^{2}=\vartheta P_{\lambda}^{\prime} \tag{1.2}
\end{equation*}
$$

\dagger Prikl. Mat. Mekh. Vol. 61, No. 3, pp. 377-384, 1997.

Proof. Suppose that λ is fixed, $P_{\lambda}=0$ and $d P_{\lambda} \neq 0$ at the point x. and the vector v. lies in the kernel of $\lambda \Gamma$ over x. Then $D=0$ and $\partial D / \partial \gamma=-P_{\lambda}^{\prime} \neq 0$ for $\gamma=0, x=x$. Applying the implicit-function theorem in the neighbourhood if x_{*}, we obtain a smooth function $\gamma_{1}(x)$-a simple eigenvalue of the operator $\lambda \Gamma$, $\gamma_{1}\left(x_{*}\right)=0$. In that case, in the same neighbourhood a smooth field $\mathrm{v}^{*}(x)$ of eigenvectors belonging to $\gamma_{1}, v(x)=v_{*}$, exists. Consider the functions $g(x)=\lambda F(v(x))=\gamma_{1}(x)|v(x)|^{2}+\lambda W(x)$ and $G(v)=\lambda F(v$ $+v(x)), v \in T M$. We have $d \lambda F_{v=v(x)}=\left.d G\right|_{v=0}$. The partial differentials along $T_{x} M$ appearing as summands on both sides of this equality vanish at $x=x_{*}$, since $\lambda \Gamma_{v}=0$. The remaining term on the right-hand side is the differential of the function $g(x)=\left.G\right|_{\mathbf{v}=0}$. Therefore, $\mathbf{v} v$ is a critical vector provided that $d g$ $=0$ at x_{*}, which, since $\gamma_{1}\left(x_{*}\right)=0$, is equivalent to $\left|\nabla \gamma_{1}(x) *\right|^{2} d \gamma_{1}+d \lambda W=0$. On the other hand, $P_{\lambda}=$ $\gamma_{1}(x) p(x)$, where $p=\gamma_{2} \gamma_{3} \ldots \gamma_{n}$, and therefore, if $\gamma_{1}=0$, we have $d P_{\gamma}=p d \gamma_{1}$ and $P_{\lambda}^{\prime}=p$, which implies (1.2) for $-\vartheta=p^{-1}(x \cdot)|v \cdot|^{-}$.

The first condition of (1.2) defines the critical points of the restriction $\lambda W Z_{\lambda}$ and the values of \mathfrak{v} at those points. Denote the set of such points at which $\vartheta P_{\lambda}^{\prime} \geqslant 0$ by X_{λ}. If X_{λ} is connected, then λW takes a constant value on it, which we denote by $\Psi(\lambda)$

$$
\begin{equation*}
\Psi(\lambda)=\lambda W(x), \quad x \in X_{\lambda} \tag{1.3}
\end{equation*}
$$

If X_{λ} is not connected, Ψ may have a different value on each component.
By Proposition 1, the set X_{λ} is filled by the trajectories of steady motions at a velocity $\pm_{\lambda}: v_{\lambda} \in \operatorname{ker}$ $\lambda \Gamma,\left|\mathbf{v}_{\lambda}\right|=\sqrt{ } \vartheta P_{\lambda}^{\prime}$. By (1.3), the value of the integral λF on these motions is $\Psi(\lambda)$.
The critical points of the map W are defined by the condition $d \lambda W=0$. By analogy with Proposition 1, the zero vectors over these points are critical points of the map F. Thus, every critical point of the function λW (other than equilibrium points) is the initial point of a steady motion over Z_{λ} with zero initial velocity; by continuity, this point must lie on Z_{λ} and the value of λW there equals $\Psi(\lambda)$. The critical values of W form a subset of the critical values of F, and this subset contains $\partial \Omega_{0}$.
2. Let us assume that the set X_{λ}, together with the function ϑ are smoothly deformed as λ varies in some domain Λ. Then $\Psi(\lambda)$ is a smooth function in Λ and the vectors $\pm \mathbf{v}_{\lambda}$ also vary smoothly, running through a subset of critical points of the integral map; denote this subset by S.

Proposition 2. The values $f=F\left(\mathbf{v}_{\lambda}\right)$ of the integral map on S are described by the equation

$$
\begin{equation*}
f=\partial \Psi / \partial \lambda \tag{2.1}
\end{equation*}
$$

Proof. By assumption, any vector in S may be embedded in a smooth field $\nabla(\lambda)=\nabla_{\lambda}(x(\lambda)), x(\lambda) \in$ $X_{\lambda}, \lambda \in \Lambda$. Let $f=F(v(\lambda))$, then $\lambda d f=d \lambda F=0$, and, since $\lambda F(\mathrm{v}(\lambda))=\lambda W(x(\lambda))$, it follows from (1.3) that $\lambda f=\Psi$, whence, after differentiation, since $\lambda d f=0$, we obtain (2.1).
Since $\Psi(\lambda)$ is a homogeneous function, it follows from (2.1) that $\lambda f=\Psi$ and $\lambda d f=0$, that is, λ is the normal and $\Pi_{\lambda}=\{: \lambda f=\Psi\}$ is the tangent plane to $F(S)$ at the point (2.1). The tangent set $\left\{\Pi_{r} \lambda \in\right.$ $\Lambda\}$ is identified with the surface $\left\{\lambda_{1}: \ldots: \lambda_{m}:-\Psi(\lambda)\right\}$ in the adjoint projective space, which is called the space dual to $F(S)$ [4]; accordingly, the parametrization of the section $F(S) \subset \Sigma$ by formula (2.1) is called a dual parametrization and the domain Λ is called a dual bifurcation domain (DBD).

For all λ in a given DBD, the signature of the matrix $\lambda \Gamma$ over the regular points of the connected part of X_{λ} is the same, since $\gamma_{2} \ldots \gamma_{n}=P^{\prime} \neq 0$. Those DBDs for which $\lambda \Gamma$ is positive-semidefinite or negative-semidefinite over $x \in X_{\lambda}$ will be called domains of definiteness and denoted by Λ^{+}or Λ^{-}, respectively.

We will limit ourselves to the case in which Σ is exhausted by the critical values of the integrals (for example, if M is a compact set) and all its smooth parts have the form $F(S)$ for sets S as described above. Then the map (2.1), denoted henceforth by $f(\lambda)$, defines a dual parametrization of the bifurcation surface.

Remark. For every point f, the normals to the planes Π_{λ} containing it form a surface $\Theta_{f}=\{\lambda: \lambda f=\Psi(\lambda)\}$ in certain DBDs. The envelope K_{f} of these planes is a cone with apex f and generators parallel to grad $(\lambda f-\Psi(\lambda))=$ $f-f(\lambda), \lambda \in \Theta_{f}$, that is, normal to Θ_{f}, so that K_{f} and Θ_{f} are mutually dual cones. Expressing (2.1) as $\operatorname{grad}(\lambda f-\Psi(\lambda))$ $=0$, we observe that the modifications Θ_{f} occur at $f \in \Sigma$, that is, in the cases considered here they correspond to bifurcations $I_{\text {. }}$.
3. Let us consider the map $\rho: I_{f} \rightarrow M$ defined as the composition of the embedding $I_{f} \rightarrow T M$ and the bundle projection $T M \rightarrow M$. The image $\rho\left(I_{f}\right)=M_{f}$ is the domain of possible motion (DPM) for the
given values of the integrals. The set of critical values of ρ is known as the generalized boundary of the DPM [5]; it includes the boundary ∂M_{f} of the DPM and is denoted by ∂M_{f} Over points $x \in \delta M_{f}$ one has modifications of the section $\rho^{-1}(x)=I_{f} \cap T_{x} M$-sets of possible velocities.

Let Ω_{x} and $\delta \Omega_{x}$ be the image of a set of critical values of the restriction $F \mid T_{x} M$. If v is a critical point of the map ρ, then necessarily $\lambda \Gamma \mathrm{v}=0$, i.e. it is also critical for $F \mid T_{\mathrm{x}} M$. Thus, the conditions $x \in M_{f}$ and $x \in \delta M_{f}$ are equivalent to the conditions $f \in \Omega_{x}$ and $f \in \delta \Omega_{x}$. The map $F \mid T_{x} M$ is homogeneous up to the term $W(x)$, and therefore the sets Ω_{x} and $\delta \Omega_{x}$ are conical with apex $f=W(x)$.

The cone $\delta \Omega_{x}$, which contains the boundary $\partial \Omega_{x}$, is described by a dual parametrization with correction for homogeneity. The values of λ form a cone $X_{x}=\{\lambda: P(\lambda, x)=0\}$, the role of Λ is played by its regular domains, defined by the condition $P^{\prime}(\lambda, x) \neq 0$.

Proposition 3. The values of $f \in \delta \Omega_{x}$ corresponding to regular points $\lambda \in X_{x}$ are described by the conditions

$$
\begin{equation*}
f-W(x)=\mu \partial P / \partial \lambda, \mu \partial P / \partial \lambda_{1} \geqslant 0, \quad P=0 \tag{3.1}
\end{equation*}
$$

with an undetermined factor μ.
The proof is analogous to that of Proposition 2, allowing for the fact that the function $\Psi(\lambda)=\lambda W(x)$ is linear and the differential $d \lambda$ must satisfy the condition $d P=0$. The inequality follows from the fact that Γ_{1} is positive.

Let Λ_{x}^{+}and Λ_{x}^{-}be the closures of the domains of λ values for which the operator $\lambda \Gamma$ is positive-definite and negative-definite, respectively, over x. Denote their boundaries, which are contained in X_{x}, by X_{x}^{+} and X_{x}^{-}, respectively; in both of them, $\lambda \Gamma$ is semidefinite. Clearly, the pairs $\Lambda_{x}^{ \pm}$and $X_{x}^{ \pm}$are symmetrical about zero.

Proceeding as at the end of Section 2, we conclude that the planes $\Pi_{\lambda x}=\{f: \lambda f=\lambda W(x)\}$ for $\lambda \in X_{s}$ are tangent to $\delta \Omega_{r \text { r }}$ If $\lambda \in \Lambda^{ \pm}$, they are support planes for Ω_{x}, and if $\lambda \in X_{x}^{ \pm}$, they are tangent to $\partial \Omega_{x}$. Indeed, since $\lambda F(v)-\lambda(W(x)=\langle v, \lambda \Gamma v\rangle$, it follows that $\pm \lambda \Gamma \geqslant 0$ if and only if $\pm(\lambda f-\lambda W(x)) \geqslant 0$ for all $f=F(\mathrm{v}), \mathrm{v} \in T_{x} M$, with equality for $f \in \partial \Omega_{x}, \lambda \in X_{x}^{ \pm}, \lambda \Gamma \mathrm{v}=0$. Thus, the cone $\Lambda_{x}^{ \pm}$is dual to Ω_{x} [6], and hence $\Lambda_{x}^{ \pm}$is convex.

In what follows we will consider the case in which all the sets Ω_{x} are convex. This is the case, for example, when $m=3$.

To prove this, one shows that the section of Ω_{x} by a plane $\left\{f_{1}=\right.$ const $\}$ is convex. Any straight line in the section may be reduced, by a linear substitution of f_{2} and f_{3}, to the form $\left\{f_{1}=\right.$ const, $f_{2}=$ const $\}$. Its pre-image in $T_{x} M$-the intersection of two quadratic surfaces-is the union of a pair of connected components symmetrical about zero. Hence the set of values $f_{3}=F_{3}(\pm \mathbf{v})$ on the pre-image is a single interval, as required.

Proposition 4. The domains of possible motion have the form

$$
\begin{equation*}
M_{f}=\left\{x: \forall \lambda \in \mathrm{X}_{x}^{ \pm}, \pm(\lambda f-\lambda W(x)) \geqslant 0\right\} \tag{3.2}
\end{equation*}
$$

Proof. By convexity, Ω_{x} is dual to $\Lambda_{x}^{+}[6]$, and therefore the condition that $\lambda \in X_{x}^{ \pm}=\partial \Lambda_{x}^{ \pm}$should imply $\pm(\lambda f-\lambda W(x)) \geqslant 0$ is necessary and sufficient for $f \in \Omega_{x}$, that is, for $x \in M_{f}$.
The boundary of Ω is obviously a subset of Σ.
Proposition 5. The smooth parts of $\partial \Omega$ are the images of the domains of definiteness under a dual parametrization, in such a way that the normals λ in Λ^{+}are inward and those in Λ^{-}outward with respect to Ω.

Proof. Let $f(\lambda) \in \partial \Omega$. Since $\Omega=\cup \Omega_{x}$, it follows that $\partial \Omega$ is tangent to $\partial \Omega_{x}$ at the point $f(\lambda)$ for some $x \in X_{\lambda}$. Then λ is normal to $\partial \Omega_{x}$, and the tangent plane $\Pi_{\lambda x}$ is a support plane by convexity; hence $\lambda \in$ $X^{ \pm}$and so $\lambda \in \Lambda^{ \pm}$. It follows from (2.1) and (1.3) that $\lambda f(\lambda)=\lambda W(x)$, and therefore, if $f=f(\lambda)+d f$, then $\lambda d f=\lambda f-\lambda W(x)$, and if $\pm \lambda d f>0$, the point f lies on the same side of $\Pi_{\lambda x}$ as Ω_{x}, that is, the normal $\pm \lambda$ is inward for Ω_{x} and Ω.
4. Let us consider the motion of a rigid body with a fixed point in a field with a quadratic potential [7]. Let $Q=\left(\alpha_{i j}\right)$ be the matrix of the transformation from principal axes of inertia to principal axes of potential, and let $I=\operatorname{diag}\left(I_{i}\right)$ and $A=\operatorname{diag}\left(a_{i}\right)$ be the principal matrices of inertia and potential. Assume that $I_{1}>I_{2}>I_{3}, a_{1}>a_{2}>a_{3}>0$. Let $J_{i}=I_{i+1} I_{i-1}, b_{i}=a_{i+1} a_{i-1}, i(\bmod 3)$. Define matrices
$U=\left(u_{i j}\right)=Q A Q^{-1}, J=\operatorname{diag}\left(J_{i}\right), B=\operatorname{diag}\left(b_{i}\right), V=\left(v_{i j}\right)=Q B Q^{-1}$.Three integrals-linear combinations of those described in [7]-have the form (1.1), where $v=\omega$ is the angular velocity, the metric is defined by the inertia tensor, and the matrices of operators in its principal axes and the functions $W_{i}(Q)$ are as follows:

$$
\Gamma_{2}=I, \quad \Gamma_{3}=U I ; W_{1}=\operatorname{tr} U I, W_{2}=-\operatorname{tr} U J, W_{3}=\operatorname{tr} V J
$$

Let us number the permutations σ of the numbers $1,2,3$ as follows: σ_{0} is the ideal permutation, $\sigma_{1}=(123)$ is a cyclic permutation, $\sigma_{2}=\sigma_{1}^{-1}, \sigma_{3,4,5}$ are transpositions, and $(i j)=\sigma_{i+j}$. Define vectors in the space R^{3} by $c_{i j}=\left(1, I_{i}, I_{i}, a_{j}\right), i, j=1,2,3$ and points $c_{k}, k=0, \ldots, 5$ by

$$
c_{k}=\sum_{i=1}^{3}\left(I_{i} a_{\sigma(i)},-J_{i} a_{\sigma(i)}, J_{i} b_{\sigma(i)}\right), \quad \sigma=\sigma_{k}
$$

As local coordinates of a point Q we take the values $w_{i}=W_{i}(Q)$. Let $w=\left(w_{1}, w_{2}, w_{3}\right)$. Then $\{w\}=$ Ω_{0} and

$$
P(\lambda, w)=\lambda_{1} \lambda_{3}(\lambda w-L(\lambda)), \quad L=\lambda c_{k}-\left(\lambda_{1} \lambda_{3}\right)^{-1} \sum_{i=1}^{3} \lambda c_{i \sigma(i)}
$$

for any $\sigma=\sigma_{k}(k=0, \ldots, 5)$. Since Z_{λ} is a level surface $L(\lambda)$ of the function λW, it follows by (1.3) that $\Psi(\lambda)=L(\lambda)$.

We carry over the notation Θ_{f} or to the projective curve of third order $\{\lambda: \lambda f=L(\lambda)\}$.
Then X_{w} coincides with Θ_{f} when $f=w$. The set of points f such that the curve Θ_{f} has a singularity is defined by the property that the discriminant of the curve vanishes, that is, the set is an algebraic surface of order 12 [8], which we denote by Δ. The set Σ lies on Δ (see the remark at the end of Section 2).

To describe Z_{λ} we will find the critical points of the sheaves λW. Omitting the calculations, we present the results for the case $a^{-1}<r<a, a=\left(a_{1}-a_{2}\right):\left(a_{2}-a_{3}\right), r=\left(J_{2}-J_{1}\right):\left(J_{3}-J_{2}\right)$. It is sufficient to take the values of λ in the plane $\left\{\lambda_{3}=1\right.$, which is shown in Fig. 1 divided into domains by the straight lines $l_{i j}=\left(\lambda: \lambda c_{i j}=0\right\}$. The points of intersection of the straight lines $l_{i \sigma(i)}$ for $\sigma=\sigma_{k}$ are indicated by the digits $k=0, \ldots, 5$. For λ in the domains $\Lambda_{0}^{ \pm}, \Lambda_{1}, \Lambda_{2}, 16$ critical points of λW exist, defined by the equations

Fig. 1.

$$
\alpha_{i j}^{2}(\lambda)=\frac{\lambda c_{i(j+1)} \lambda c_{i(j-1)} \lambda c_{(i+1) j} \lambda c_{(i-1) j}}{\left.\left(I_{i}-I_{i+1}\right)\left(I_{i}-I_{i-1}\right)\left(a_{j}-a_{j+1}\right)\left(a_{j}-a_{j-1}\right)\left(\lambda_{1} \lambda\right)_{3}\right)^{2}}
$$

$i, j(\bmod 3)$, and differing in the signs of $\alpha_{i j}$, we give them a common notation Q_{λ}. The other critical points for $\lambda \in I_{i j}$ fill out curves $C_{i j}=\left\{Q: \alpha_{i j}= \pm 1\right\}$. Among them are 24 equilibrium points, where $\alpha_{i \sigma(i)}= \pm 1, w=c_{k}$ for $\sigma=\sigma_{k}, d W_{i}=0(i=1,2,3 ; k=0, \ldots, 5)$.

The form of Z_{λ} will be deducted from the modifications of the level sets λW as the level values pass through the critical values [9]. Since the first condition (1.2) is identically valid for $\vartheta=\left(\lambda_{1} \lambda_{3}\right)^{-1}$, the set X_{λ} is the part of Z_{λ} on which sign $P_{\lambda}^{\prime}=-\operatorname{sign} \lambda_{1} \lambda_{3}$. On Z_{λ} the sign of $P_{\lambda}^{\prime}=\gamma_{2} \gamma_{3}$ (for $\gamma_{1}=0$) is found from the signature of $\lambda \Gamma$ in the domains separated by Z_{λ}. We deduce that for λ in the unlabelled domains in Fig. 1 either Z_{λ} or X_{λ} is empty. For $\lambda \in \Lambda_{0}^{ \pm}, \Lambda_{1}, \Lambda_{2}$, the set X_{λ} is formed by four of the eight components of Z_{λ} which are diffeomorphic to spheres punctured at four points and glued to Q_{λ} at the punctures. For the other labelled domains, the sets X_{λ} are identical with Z_{λ}, are diffeomorphic to a pair of tori and, as λ passes through $I_{i j}$, are modified according to $C_{i j}$. Thus, the labelled domains in Fig. 1 are DBDs; the meaning of the superscript plus or minus was indicated previously. The pieces of the boundary $\Lambda \cdots$ are denoted by $\partial_{i j} \Lambda_{\cdots}=l_{i j} \cap \partial \Lambda_{\cdots}^{\cdots}$.

The coordinates ω_{i} of the velocity of a steady motion along X_{λ} satisfy the conditions

$$
\begin{align*}
& \omega_{1}: \omega_{2}: \omega_{3}=u_{1}^{-1}: u_{2}^{-1}: u_{3}^{-1} \tag{4.1}\\
& u_{i}=\left(\lambda_{1}+I_{i} \lambda_{2}\right) u_{j k}-I_{i} \lambda_{3} \psi_{j k}, \quad i \neq j \neq k \neq i
\end{align*}
$$

(In the equation $\lambda \Gamma \omega=0$, multiply the i th row by $u_{j k}, i \neq j \neq k \neq i$, single out the term $\operatorname{diag}\left(u_{i}\right)$ in the new matrix and note that $u_{i} \omega_{i}$ does not depend on i.) The three $u_{i} s$ vanish simultaneously only at points Q_{λ} where $\omega=0$, or when $\lambda \in l_{i j}$ on the curves $C_{i j}$ along which the steady motions occur with arbitrary initial ω_{i} and with $\omega_{j}=0(j \neq i)$; these motions correspond to the values $\lambda_{1}=0$ or $\lambda_{3}=0$.

The values of the integrals on motions along $C_{i j}$ form nine rays $T_{i j}$ parallel to $c_{i j}$, each containing two points $c_{k}, j=\sigma_{k}(i)$, and ending in one of them. These rays (parts of the self-intersection edges of the surface Δ) are shown schematically in Fig. 2; they form the one-dimensional skeleton of the set Σ. The two-dimensional components of Σ are diffeomorphic images of the domains Λ_{\ldots}^{*} in Fig. 1 under the map $f(\lambda)$; denote the image $f\left(\Lambda_{\cdots}^{\cdots}\right)$ by $\Sigma_{\ldots . .}$ with the same indices. These images are glued to the skeleton by continuation of $f(\lambda)$ to the boundary of the DBD. When that is done the vertices labelled k go into c_{k}, points with $\lambda_{1}=0, \infty$ go to infinity, $\partial_{i j} \Lambda_{\cdots} \ldots(i \neq j)$ are mapped monotonically into $T_{i j}$ and $\partial \Lambda_{\ldots} .$. doubly into $T_{i i}: \partial_{i i} \Lambda^{ \pm}{ }_{i i}$ onto $\left[e_{i}, \infty\right), \partial_{22} \Lambda_{0}^{-}$onto $\left[c_{4}, e_{2}\right]$ and $\partial_{i i} \Lambda_{3}$ onto $\left[c_{0}, d_{i}\right]$. These segments of the rays $T_{i i}$ will be called inner edges of the cells $\Sigma \Lambda_{\cdots}^{\prime \prime}$ glued to them (note that there are no two-dimensional cells glued to the segments $\left.\left(a_{i}, e_{i}\right) \subset T_{i i}\right)$. Thus, the totality of DBDs in Fig. 1 is an "unfolded" image of the bifurcation surface, which demonstrates the relative positions of its parts.

The partition of the domain Ω by the surface Σ consists, besides $\Omega_{0,}$, of four infinite domains $\Omega_{i j}$ (i, $j=1,3$), one of which contains the finite domain Ω_{1}. To avoid graphical difficulties, we will present separate schematic depictions of the parts of Σ bounding these domains (for the relationship chosen among I_{i}, a_{i}).

Figure 2 shows the boundary of Ω_{0}; the "invisible" faces Σ_{1} and Σ_{0} are not shown. Figures 3 and 4 show the boundaries of $\Omega_{i j}, i \neq j$ and $\Omega_{i j}$; here $k=i+1(\bmod 3)$, the upper index of the plus and minus

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.
superscripts in the symbol $\Sigma_{. . .}$is taken when $i=1$, the inner edges $\left[c_{0}, d_{i}\right]$ of the faces Σ_{12}, Σ_{23} and Σ_{2} are not shown. Figure 5 represents the closed surface Σ_{3} with inner edges $\left[c_{0}, d_{i}\right]$ it bounds the domain Ω_{1}, which is contained in Ω_{13}. By Proposition 5 , the pieces $\Sigma_{0}^{+}, \Sigma_{i j}^{+}$and $\Sigma_{0}, \Sigma_{i j}$ form the upper and lower parts of $\partial \Omega$, respectively, relative to the f_{1} axis.

Since $\partial L \partial \lambda=f(\lambda)$, condition (3.1) becomes

$$
\begin{equation*}
f-w=\tau(f(\lambda)-w), \quad \lambda w=L(\lambda) \tag{4.2}
\end{equation*}
$$

with an indefinite multiplier τ, which means that the points $f, w, f(\lambda)$ are collinear. Multiplying the first equality of (4.2) by λ we see, by virtue of the second equality and the identity $\lambda f(\lambda)=L$ (which follows from the homogeneity of $L(\lambda)$), that $\lambda(f-w)=0$, that is, the second equality in (4.2) can be replaced by $\lambda f=L$. Hence it follows that the cone $\delta \Omega_{w}$ is half $\left(f_{i} \geqslant w_{i}\right)$ of the cone K_{w} dual to the set X_{w}, and the generalized boundary δM_{f} is the intersection with Ω_{0} of the half ($w_{i} \leqslant f_{i}$) of the cone K_{f} dual to Θ_{f} (cf. the remark at the end of Section 2).

Consider the domains $\Lambda_{f}^{+}, \Lambda_{f}^{-}, \Lambda_{f}^{ \pm}=\{\lambda: \pm(\lambda f-L) \geqslant 0\}$ in the plane $\left\{\lambda_{3}=1\right\}$; they are bounded by the curve Θ_{f} and the λ_{2} axis. Since $\lambda w=L$ on X_{w}, we can rewrite (3.2) as

$$
\begin{equation*}
M_{f}=\left\{w: \mathrm{X}_{w}^{ \pm} \subset \Lambda_{f}^{ \pm}\right\} \tag{4.3}
\end{equation*}
$$

Note that condition (4.2), which expresses the membership relation $w \in \delta M_{f}$, means that X_{w} is tangent to Θ_{f}, while the membership relation $w \in \partial M_{f}$ means, by (4.3), that $X_{w}^{ \pm}$is tangent to $\partial \Lambda_{f}^{ \pm}$.

Since the problem is integrable, the description of the integral surfaces reduces to indicating the number of component tori in each. To that end, we establish the form of M_{f} and the nature of the projection $I_{f} \rightarrow M_{f}$ for near-critical values of f.

All the curves Θ_{f}, have three common points at $\lambda_{1}=0, \lambda_{2}=-a_{i}$ and three at infinity on the directions $l_{i j}$. The form of Θ_{f} may be established at $f=c_{k}$ (a triple of straight lines $l_{i \sigma(i)}, \sigma=\sigma_{k}$), at $f \in T_{i j}$ (a straight line $l_{i j}$ and a hyperbola); by the Remark in Section 2, their form for other $f s$ follows by continuity. Let $f_{*}=f\left(\lambda_{*}\right), \lambda_{*} \in \Lambda_{11}^{-}$. Denote the corresponding sets by M_{*}, Θ_{*}, Z_{*}. Let file in Ω_{11} near f. . Figure 6 shows

Fig. 6.
segments of the curves $X_{\boldsymbol{w}}^{-}, \Theta_{j}$ and Θ_{*} (dashed) near $\lambda_{\text {.- }}$-the nodes of Θ_{*}, and the domains $\Lambda_{f}^{-}, \Lambda^{-*}$ lie between the upper and lower branches of $\Theta_{j}, \Theta_{\text {. }}$.

It is clear that a necessary condition for $X_{w}^{-} \subset \Lambda^{-} \cdot$ is that $\lambda_{*} \in X_{w}$, that is, $w \in Z_{*}$, and a necessary condition for $X_{w}^{-} \subset \Lambda_{f}^{-}$is that the curve X_{w} pass near $\lambda_{\text {e, }}$, so that M_{f} lies near Z. Since $Z . \subset M_{\text {., it follows }}$ that $M_{\cdot}=Z_{*}$ and, by (4.3), the relation $\lambda_{*} \in X_{w}^{-}$is a sufficient condition for $X^{ \pm}{ }_{w} \subset \Lambda_{f}^{ \pm}$By continuity, taking into consideration the possible nature of the intersection of the algebraic curves X_{w} and Θ_{f} with six common points, one can show that a sufficient condition for $X^{ \pm}{ }_{w} \subset \Lambda^{ \pm} f$ is that the branch $X_{w}{ }^{-}$should pass between the branches Θ_{f} in Fig. 6; their points of tangency at $w \in \delta M_{f}$ form sets Θ_{f}^{\prime} and $\Theta^{\prime \prime}$ on the upper and lower branches, respectively, of Θ_{f} near λ. The other branches of the curve X_{w} do not pass through Λ_{11}^{-}; therefore, first, $\partial M_{f}=\partial M_{f}$, and second, if $w \in M_{f}$, the quantity $\lambda w-L(\lambda)$ is nonpositive on Θ_{f}^{\prime} and non-negative on Θ_{f}^{\prime}. Consequently, M_{f} lies at the intersection of the following domains Ω_{f}^{\prime} and $\Omega_{f}^{\prime \prime}: \Omega_{f}^{\prime}=\cap_{1} \Omega_{\lambda}^{-}, \lambda \in \Theta_{f}^{\prime} ; \Theta_{f}^{\prime \prime}=\cap \Omega_{\lambda}^{+}, \lambda \in \Theta_{f}^{\prime \prime} ; \Omega_{\lambda}^{ \pm}=\{w: \pm(\lambda w-L) \geqslant 0\}$. Since the boundaries of these domains are defined by the same condition of the tangency of X_{w} with Θ_{f} as ∂M_{f}, it follows that $M_{f}=\Omega_{f}^{\prime} \cap \Omega_{f}^{\prime \prime}$ and $\partial M_{f}=\partial \Omega_{f}^{\prime} \cup \Omega_{f}^{\prime \prime}$.

Shifting each point of Z * along a vector field transverse to Z. to a point with coordinates w_{i} such that X_{w} is tangent to Θ_{f}, we obtain a continuous deformation of $Z *$ into $\partial \Omega_{f}^{\prime}$ and $\partial \Omega_{f}^{\prime \prime}$. Thus, M_{f} has two components, each bounded by a pair of tori and contractible to a component of the surface Z. Each boundary point of M_{f} is the image under projection from I_{f} of two antipodal vectors of the form (4.1), and each interior point is similarly the image of two antipodal pairs of nearby vectors. Hence I_{f} consists of four three-dimensional tori, each pair of which projects into two components of a DPM.

This is the form of I_{f} for $\Omega_{33}, \Omega_{13}, \Omega_{31}$. Proceeding in analogous fashion for Ω_{1}, one can deduce that the integral surfaces consist of eight tori: four that project onto a DPM, as described above, and two more pairs that project onto subsets of components of a DPM of the same form. For Ω_{0}, the four tori comprising I_{f} project, one each, into the four components of the DPM bounding each pair of surfaces homeomorphic to a sphere.

REFERENCES

1. SMALE, S., Topology and mechanics. Invent. Math., 1970, 10, 4, 306-331; 11, 1, 45-64.
2. LEVI-CIVITA, T. and AMALDI, U., Lezioni di Meccanica Razionale. Zanichelli, Bologna, 1927, Vol. II, 2.
3. OREKHOV, V. I., Topological analysis of natural system with quadratic integrals. Prikl. Mat. Mekh., 1985, 49, 1, 10-15.
4. FAVARD, M. P., Cours de Géometrie Differentielle Locale. Gauthier-Villars, Paris, 1957.
5. KHARLAMOV, M. P., Topological Analysis of Integrable Problems of Rigid Body Dynamics. Izd. Leningrad. Gos. Univ., Leningrad, 1988.
6. ROCKAFELLAR, R. T., Convex Analysis. Princeton University Press, Princeton, NJ, 1970.
7. BOGOYAVLENSKII, O. I., Two integrable cases of the dynamics of a rigid body in a force field. Dokl. Akad. Nauk SSSR, 1984, 275, 6, 1359-1363.
8. GUREVICH, G. B., Elements of the Theory of Algebraic Invariants. Gostekhizdat, Moscow, 1948.
9. MILNOR, J., Morse Theory. Princeton University Press, Princeton, NJ, 1963.
